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Highly tellurium-doped GaAs samples were investigated by high-resolution X-ray
diffractometry in the triple-axis mode. Different reciprocal maps, depending on the
technological process, are presented and interpreted as caused by different microde-
fects. Computer simulations allow us to determine the type of microdefects, namely
the orthorhombic defects and dislocations loops. A theoretical approach for defects
composed of several atoms is proposed. Alternative descriptions of pairs of defects as
uniform distributions of such paired defects or non-uniform distributions of single-
defect components are presented.
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1. Introduction

In the present paper an application of X-ray high-resolution diffractometry to defect
characterization is described. The method consists of a very good collimation and
monochromatization of the beam incident on a sample and the use of an analyser
crystal to extract a well-collimated beam from the scattered radiation, containing
information on the defects present in the sample. From angular scans of the sample
and analyser, intensity maps of the beam in reciprocal space are obtained; these
maps allow us to characterize the defects.
Defects of very different types are generated during the growth and technological

processes (i.e. thermal annealing) of the crystals. The knowledge of these types of
defects is very important for the quality optimization of the materials. As a non-
destructive method, X-ray diffractometry is very convenient in this respect. It can
be complemented by X-ray topography (Lang 1957, 1959) to show defects of larger
sizes.
It is known (Fuller & Wolfstrin 1963; S4lupiński et al . 1996; Zielińska-Rohozińska

et al . 1997; Borowski et al . 1998) that thermal annealing modifies significantly the
free-electron concentration of very highly doped n-GaAs. It also leads to creation of
certain types of extended defects. Results concerning the effect of thermal annealing
of heavily doped GaAs:Te on diffuse X-ray scattering have previously been reported
(S4lupiński et al . 1996; Zielińska-Rohozińska et al . 1997). Small defects (with radii
smaller than 0.1 µm) are created in these samples, depending on the concentration
of Te atoms. It is interesting to note that the content of such microdefects can be
substantially reduced using a suitable annealing process.
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In this paper various defects are analysed, some of them consisting of several or
several tens of atoms only. Subsequent phases of dislocation-loop formation and the
corresponding changes in the maps are also discussed.

2. Theoretical basis

(a) Point and extended defects

A theoretical model of X-ray diffraction in real crystals, containing randomly dis-
tributed defects which deform the crystal lattice, should be based on a statistical
description of the whole system. In the diffraction process an X-ray is scattered in
part by the atoms inside the defects, and partly by the deformed lattice outside the
defects. The measured total intensity is compared with the theoretically calculated
mean intensity, averaged over the statistical ensemble of crystals which are macro-
scopically identical, but differ through their microscopic distributions of defects.
Atoms forming the defects (e.g. donors) may be single and isolated or grouped

in precipitate clusters of given geometrical shapes, e.g. spheres or dislocation loops
(Larson & Schmatz 1974), depending on their concentration and the technological
processes to which the crystals are subjected. It is convenient to use the term single-
atom defects for the former and the term many-atom defects for the latter. On the
other hand, if the effects arising due to the scattering inside a defect are not measured
or even not measurable, it is sufficient to describe the lattice displacements around
the defect as a displacement field of a point defect. Such a field is most conveniently
obtained by extrapolation of the outer displacement field on the inner region of
the defect. For example, if a spherical inclusion is characterized by the following
displacement field:

t(r) =

{
Ar, for r � R,

AR3 r

r3 , for r � R,
(2.1)

where A and R are constants (the misfit parameter and the ‘size’ of the inclusion,
respectively), r is the position vector and r is its length, then such an extrapolation
consists of substituting (2.1) by the corresponding point-defect displacement field:

tp(r) = AR3 r

r3 , r �= 0. (2.2)

At the same time it is hard to determine the contribution of the scattering on the
inner region of defects (Trinkaus 1971), especially of small dimension (R < 1 µm),
because it would require precise measurements of the far wings of the rocking curves,
which depend on the structure of the defect cores.
The difference between the point defects and extended defects is analogous as in

the description of electrons or protons usually applied in electrodynamics. If only
the trajectories of these particles in cloud chambers are measured, then they can be
sufficiently and naturally described as point-like objects. However, if one wants to
investigate the magnetic dipole moment of an electron (Wesley & Rich 1970; Levine
& Wright 1971), its internal structure cannot be neglected. For the purpose of this
article it may be therefore concluded that a single-atom defect should be treated as
being extended if the scattering by this atom is observed, and, similarly, a defect
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which is ca. 1 µm large can be treated as a point defect if the scattering by its core
is neither observed nor described.
If an object is treated as a point defect, then not only can the continuous dis-

placement field (2.1) be replaced by the tempered distribution (2.2), but also the
density fk(r) of the volume force exerted by the defect on the crystal lattice may be
described by a tempered distribution (Borowski 1998):

fk(r) = −Pkj
∂

∂xj
δ(r), (2.3)

where Pkj is the so-called double-force tensor of the defect (Trinkaus 1972) and δ(r)
is the Dirac delta distribution.

(b) The correlation functions

As mentioned in § 2 a, the measured intensity of the diffuse scattering is compared
with the theoretical intensity averaged over the statistical ensemble of crystals with
different microscopic defect distributions, expressed through the mean values, corre-
lation functions and higher-order moments (which have not been taken into account
in the existing descriptions of X-ray diffuse scattering). It is therefore essential to
formulate precisely what is meant by ‘mean values’ and ‘correlation functions’ as well
as to define the relations between these two quantities in the expressions appearing in
the models of diffuse scattering, e.g. in the so-called cluster expansion (Kubo 1962).
For the definition of the defect volume concentration ρ(r), a characteristic volume

V0 is chosen, such that V0 � L3 � R3, where L is the mean distance between the
defects and R is their mean size; at the same time V0 � V , where V is the whole
crystal volume. The number N of defects in the volume V0 around the point r is
then by definitionN(r) = ρ(r)V0 (with the approximation to statistical fluctuations).
Obviously, in some cases ρ may be taken in the crystal as position dependent.
The non-normalized correlation functions of random variables {x1, . . . , xn} with

the overall distribution of the probability density f(x1, . . . , xn) are defined here as

ε(xi, xj) = 〈xixj〉 − 〈xi〉〈xj〉, (2.4)

where

〈xi〉 =
∫
dx1 · · ·dxn f(x1, . . . , xn)xi (2.5)

and

〈xixj〉 =
∫
dx1 · · ·dxn f(x1, . . . , xn)xixj . (2.6)

If the variables xi and xj are independent, then 〈xixj〉 = 〈xi〉〈xj〉 and ε(xi, xj) = 0.
However, it is important to note that the reverse relation is not always true and
ε(xi, xj) = 0 does not necessarily mean that xi and xj are independent (Feller 1961).
Therefore, it should be remembered that the correlation function (2.4) represents
only an indirect measure of independence of variables; normally xi and xj for which
ε(xi, xj) is zero are called unconnected or uncorrelated (and not independent) vari-
ables.
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The degree of correlation of defect distributions can be determined taking, in
particular, xi = ρ(ri). As an example consider a non-uniform distribution of defects
with a constant concentration, such that each defect can be either isolated (i.e.
there are no other defects within distance L) or defects can form crystallographically
oriented pairs (i.e. for a defect situated at r0 there is a closest neighbour at, say,
r0 + 1

10L[110], where [110] is an exemplary orientation of the pair). Denoting by Ii

the number of isolated defects in the regions of volume V0 surrounding the points ri

(i = 1, 2), and by Pi the number of the exemplary defect pairs in the same regions, the
condition of constant concentration can be written as I1+2P1 = I2+2P2. However,
generally P1 �= P2 and statistical distributions of such pairs can be described by
defining the suitable random variables and their correlation functions. Examples of
such random variables are u(r) and v(r), defined in the following way: u(r) = 1
when there is a defect at r and u(r) = 0 when there is no defect there; v(r) = 1
when there is a defect at r + 1

10L[110] and v(r) = 0 when there is no defect there.

(c) The cumulant function

In order to obtain theoretically the intensity of X-ray diffuse scattering from a
crystal with statistically distributed microdefects, the quantities of the following
type must be calculated:

F =
〈
exp

{ N∑
i=1

aiCi

}〉
, (2.7)

where Ci are random variables connected with the distributions of defects, while the
functions ai represent the displacement field of the defect. Expression (2.7) can be
calculated when it is written in a somewhat different form:〈

exp
{ N∑

i=1

aiCi

}〉
= exp{K(a1, . . . , aN )}, (2.8)

and the so-called cumulant function K is sought when both sides of (2.8) are expand-
ed in the Taylor series and compared (Kubo 1962). The expression for the cumulant
function can be obtained by grouping first the terms containing only ai, then pairs
{ai, aj}, up to the terms containing all functions {ai, . . . , aN}:

K(a1, . . . , aN ) =
N∑

i=1

K1(ai) +
N∑

i,j=1

K2(ai, aj) + · · ·+KN (a1, . . . , aN ). (2.9)

This is the so-called cluster expansion (Kubo 1962), and the functions Ki can be
expressed by the statistical moments of the distributions of the random variables ci.
If a subset {ci1 , . . . , cim} of the independent random variables can be found, then
their function Km(ai1 , . . . , aim

) = 0 and the corresponding term is removed from
series (2.9).

(d) Application to X-ray diffuse scattering

In physical applications it is rather difficult to estimate how many terms in (2.9)
are sufficient for a good approximation of the cumulant function K. Some terms can
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be chosen in an heuristic way and then one can verify if the next terms are only
small corrections. In calculations for X-ray diffuse scattering, normally only the first
term in (2.9) remains for defects’ uniform distributions, or the two first terms for
non-uniform distributions. Therefore, a sufficient approximation for expressions like
(2.8) is (Kubo 1962; Krivoglaz 1984; Kaganer et al . 1997)

〈
exp

{ N∑
i=1

aiCi

}〉
∼=

N∑
i=1

log{1 + a1〈ci〉}

+
N∑

i,j=1

log
{
1 + aiaj

〈cicj〉 − 〈ci〉〈cj〉
(1 + ai〈ci〉)(1 + aj〈cj〉)

}
. (2.10)

The expression in the denominator of the second term represents the correlation
function of the random variables, describing the presence of defects in the possible
positions (in the discrete notation used here) or the defects’ volume-concentration
correlation function (in the continuous notation).
For most applications to X-ray diffuse scattering by statistically distributed micro-

defects, expression (2.10) has proven to be sufficiently accurate. However, theoret-
ically it may happen that the defects’ distribution is such that they exist only in
threes, so that each group of three lies at a distance of all others far larger than the
distances within each group. Then three first terms in (2.9) would have to be taken
into account.

(e) The intensity of scattered diffuse radiation

In the case of X-ray diffuse scattering by microdefects the measured intensity is
compared with the following theoretical expression (Dederichs 1971; Krivoglaz 1984):

ID(Q) =
∑
k,l

exp{iQ · (Rk − Rl)}

× {〈exp[iQ · (uk − ul)]〉 − 〈exp[iQ · uk]〉〈exp[iQ · ul]〉}, (2.11)

where Q = Kh − K0, Rk is the position of the kth atom in the mean lattice and uk

is the deviation of the kth atom from Rk.
Averaging in (2.11) is done by the method described in § 2 b (for details, see

Krivoglaz 1984; Kaganer et al . 1997). Intensity is calculated (for a uniform dis-
tribution of defects) with only the first term in (2.9), i.e. the correlation functions
are neglected. The full expressions in this case are given elsewhere (formulae (4)–(10)
in Borowski et al . (1998)). The intensity Im measured in a triple-axis experiment is
a sum of two terms: (i) a term due to diffraction in an ideal monochromator, sample
and analyser crystals, described by reflectivities Rm, Rs, and Ra, respectively (Holý
& Mikulik 1996); and (ii) a term due to diffraction in the (ideal) crystals described
by Rm and Ra as well as the effect of microdefects described by ID. This can be
symbolically written as

Im = Rm ∗ Rs ∗ Ra +Rm ∗ ID ∗ Ra, (2.12)

where the symbol ∗ means a repeated operation of integrating over beam divergences
and the spectral distribution of the incident beam.
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Table 1. The annealing processes of the four samples of LEC Te-doped 001-oriented GaAs
slices studied in this paper

(Q stands for quenching, n[Te] means the tellurium concentration.)

sample S1 As-grown n[Te] = 4.5× 1018 cm−3

sample S2 (i) 1195 ◦C for 2 h + Q n[Te] = 1.0× 1019 cm−3

(ii) 1100 ◦C for 5 h + Q
(iii) 1180 ◦C for 2.5 h + Q

sample S3 950 ◦C for 66 h + Q n[Te] = 6.0× 1018 cm−3

sample S4 755 ◦C for 139 h n[Te] = 1.5× 1019 cm−3

3. Experimental

The four samples studied in the present work were LEC Te-doped 001-oriented slices
of GaAs. The last three were subjected to the annealing processes detailed in table 1.
High-resolution X-ray diffraction reciprocal space maps were measured using a

Philips MRD diffractometer set for 440 germanium reflections with Cu-Kα1 radia-
tion. Figure 1a presents a map of sample S1; the characteristic streaks are seen—the
vertical sample streak and the skew analyser streak. This image can be treated as a
reference map for the perfect crystal as the sample apparently contained only native
defects (Zielińska-Rohozińska et al . 1997). Tellurium atoms form single-atom defects
which cause a weak deformation of the neighbouring GaAs lattice; as a result the
value of ID is small. In such a case the second term in (2.12) is much smaller than
the first term, and the map is described by the first term, giving the characteristic
streaks (Holý & Mikulik 1996).
Figure 1b presents a map of sample S2, resembling somewhat the streaks of fig-

ure 1a, but blown up and deformed, especially in the centre of the map. The techno-
logical process to which the sample was subjected has led to defect formation (either
clustering of Te atoms, or formation of some defects composed of Ga and As atoms,
due to the presence of Te atoms, or both). In this case the value of ID is greater than
in the former case, but still relatively small (small concentration of defects and/or
small deformation of the bulk GaAs lattice). Both terms in (2.12) are comparable.
A quantitative analysis of such maps is difficult, because the influence of the defects
on the map characteristics is limited to some deformation of the streaks.
The map of figure 1c (for large values of q) presents a picture characteristic of

dislocation loops (sample S3) with the Burgers vector b = 1
3 [111] and the unit vector

n normal to the plane of the loop being parallel to b. The image for small q seen
in figure 1c cannot be treated as being caused by these loops. Two possibilities can
be envisaged. First, the concentration of the loops can be so small that the second
term in (2.12) is still rather small and for small values of q (but greater than a
few half-widths of the Bragg peak where the kinematical approximation is valid) the
Bragg scattering has comparable intensity with the diffuse scattering. In this case one
should calculate the total intensity rather than separate it into the diffuse and Bragg
scattering terms. On the other hand, for large values of q the diffuse scattering is
dominant and the characteristic loop image (simulation shown in figure 1d) is clearly
visible. Secondly, other defects may be present whose image is dominant for small
values of q and less visible for larger q.
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Figure 1. Diffuse scattering maps of the GaAs samples: (a) almost ideal map (streak, sample S1);
(b) map with very small diffuse intensity (deformed streak, sample S2); (c) map showing the
presence of dislocation loops (sample S3) b = 1

3 [111]; (d) simulation for dislocation loops of
figure 1c. The intensity levels shown are 1.5 counts per second (cps, outer contour), 80 cps
(middle contour) and 800 cps (inner contour).

The maps of figure 1a–c can be treated as an illustration of the dislocation-loop for-
mation process as an effect of various technological processes. At the same time they
illustrate the characteristics of the maps as a function of diffuse scattering intensity:
a streak when ID is very small (figure 1a); a deformed streak when ID is comparable
with the Bragg scattering intensity (figure 1b); and an image of the defects (at least
for greater q) when ID is dominant. In the latter case the expressions for Rm and Ra
in the second term of (2.12) define only the resolution of the experiment.
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(b)(a)
15

10

5

0

−5

−10

−15
−10        −5          0           5         10 −10        −5          0           5         10 

qx  (µm−1) qx  (µm−1)

q z 
 (µ

m
−1

)

Figure 2. (a) Symmetrized experimental map for sample S4, h = [004]; (b) corresponding simu-
lation for the orthorhombic defects. The intensity levels shown are 10 cps (outer contour), 50 cps
(middle contour) and 200 cps (inner contour).

Figure 2a shows symmetrized diffuse intensity for sample S4, while figure 2b
presents a theoretical simulation for defects of orthorhombic symmetry (Borowski
1997; Borowski et al . 1998). They may be formed by [110]-oriented pairs of donor
atoms (or even a single donor atom located in a suitable point of the elementary
cell) or larger precipitates in the shape of a parallelepiped with the following edges:
[110], [11̄0] and [001]. For the time being, experimental data, giving information
about the core of the defects, are lacking, so the simulations were performed using
the point-defect model. A uniform defect distribution was assumed (therefore, the
correlation function was neglected). If these defects were pairs of Te atoms, the same
results could be obtained by treating the defects as single atoms and taking into
account the correlation functions describing the pairs. However, if these are many-
atom defects, then the description of the measured orthorhombic symmetry of the
displacement field in terms of the many-atom correlation function would be very
complicated and not useful. On the other hand, treating the whole atomic cluster
(single atom, several atoms, or several tens of atoms) as a single defect, one can
describe all the mixed situations.
The simulations for the Huang region (Huang 1947) confirm that the displacement

field outside the defect has an orthorhombic symmetry. Their size and the force
exerted by them on the surrounding lattice can be identical for every single defect
or, more probably, they can be statistical quantities. In the latter case the maps and
the profiles in the Huang region will not change, but the values of Pij will be replaced
by 〈Pij〉, and the oscillations in the Stokes–Wilson region (Borowski & Gronkowski
1999) will be smeared out (averaged), leading to the dependence ID(q) = C/qα, α
being dependent on the distribution of the defect sizes, and C being a constant.
However, for the time being, measurements in this region are lacking.
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4. Conclusions

This paper presents the method of measuring X-ray diffuse-radiation intensity for
characterization of defects formed as a result of various technological processes in
GaAs crystals doped with Te.
It is stressed that a statistical distribution of defects consisting of many atoms

can be described in two ways: either it can be treated as a uniform distribution of
many-atom defects, or a non-uniform distribution of single-atom defects (obviously,
in some cases non-uniform distributions of many-atom defects are also measured,
(see, for example, Kaganer et al . 1997)).
Using the example of the dislocation-loop and orthorhombic-defect formation pro-

cesses in GaAs, the influence of the amount of diffuse scattering on the measured
maps of intensity is demonstrated.

The present work was done within the grant T08A 027 15 of the State Committee for Scientific
Research (KBN).
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Dederichs, P. H. 1971 Phys. Rev. B4, 1041.
Feller, W. 1961 An introduction to probability theory and its applications. Wiley.
Fuller, C. G. & Wolfstrin, K. B. 1963 J. Appl. Phys. 34, 2287.
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